

Lessons Learned in Developing
Commercial Off-The-Shelf (COTS)
Intensive Software Systems

Federal Aviation Administration
Software Engineering Resource Center

October 2, 2000

FAA Software Engineering Resource Center

TABLE OF CONTENTS

Preface.. 1

Acknowledgements ... 1

Introduction ... 2

Application Domains.. 3

Lessons Learned... 4
1 Problems with Vendors... 4
2 Leverage in Gaining Vendor Cooperation .. 4
3 Need for Flexibility in Defining Requirements... 4
4 Importance of Operational Demonstrations .. 5
5 Assessment of Specific Attributes .. 5
6 Life-Cycle Issues .. 6
7 COTS Integrator Experience .. 7
8 Need for Technology Watch to Keep up With Vendors .. 8
9 Interface to Legacy Systems .. 8
10 Impacts of Volatility During Development ... 8
11 Vendor Management .. 8

Summary... 9

LessonsLearned2.doc October 2, 2000

i

FAA Software Engineering Resource Center

Preface

The Federal Aviation Administration (FAA), most of the Federal Government, and industry are
realizing an ever-increasing dependency on commercial off-the-shelf (COTS) products. Office
automation products within the FAA have been heavily or exclusively COTS-based for well over a
decade. This paper addresses the recent trend of increased COTS use in the National Airspace
System (NAS). While the term COTS refers to both hardware and software, the lessons learned
reported in this paper are primarily focused on software. It should be noted that this paper is
intended to be the first of several papers on the subject and that future publications will include
the entire genre of COTS usage. As we grow in the use of COTS products so too will our
knowledge and experience of using COTS products.

It is inevitable that systems development will become more dependent upon COTS in the future.
Ten years ago software systems with one million lines of code were considered huge. Now ten
million lines of code are not unusual. It is expected that the size and complexity of systems will
continue to grow. It is not feasible to develop these systems fully from scratch. As software
engineering becomes more disciplined and available COTS expands to provide robust and stable
functionality, it will become mandatory to include COTS in all major systems. This document
addresses experiences the FAA has had in using COTS during this interim period while COTS
products are not all robust, do not necessarily work well together, and require significant risk
mitigation activities to be successfully used. However, there are significant and growing
examples of successful use of COTS.

The Software Engineering Resource Center (SERC) at the William J. Hughes Technical Center is
supporting the efforts of Dr. Barry Boehm of the University of Southern California (USC) in
developing COCOTS, a life-cycle costing model that specifically will address the use of COTS.
This work is predicated upon the earlier success of both the COCOMO and COCOMO II models.
COCOTS is an outgrowth of, and works in conjunction with, COCOMO II.

The lessons contained in this report were captured as part of interviews carried out by
Christopher Abts of USC and Dr. Betsy Clark of Software Metrics, Inc. to obtain calibration data
for COCOTS, and is by no means a total list of COTS risk areas. The SERC appreciates the
generosity of the National Airspace System (NAS) project personnel who provided data and who
shared both their triumphs and frustrations in developing COTS intensive systems. The quotes
shown in italics throughout this document are extracted from the interviews with these personnel.
Of the twenty projects interviewed, sixteen shared one or more lessons. The projects varied
greatly in their success; some proceeded with relatively few problems while several experienced
true COTS horror stories. The majority of the problems encountered could have been prevented
by either modifying the development approach or by taking appropriate steps before signing
contracts with the COTS vendors. The purpose of this document is to help current and future
projects avoid the mistakes and implement practices that proved effective. As the data collection
activity continues additional lessons will unfold.

Acknowledgements

Contributing editors to this document:

Patrick Lewis, SERC Program Director
Patrick Hyle, SERC COCOTS Project Manager
Marian Parrington, SERC
Dr. Elizabeth Clark, Software Metrics, Inc.
Dr. Barry Boehm, University of Southern California
Christopher Abts, University of Southern California
Robert Manners, Informatica of America, Inc.

LessonsLearned2.doc October 2, 2000

1

FAA Software Engineering Resource Center

Introduction

“COTS is high risk because we are dependent on someone else. Otherwise, we would have to
write all the software ourselves. There needs to be a process to help people evaluate [and
mitigate] their risks.”

As an increasing number and variety of commercial-off-the-shelf (COTS) and commercially
available software (CAS) packages become available, it is important to understand the costs,
benefits, and risks entailed in using these components. For purposes of clarity and readability,
“COTS” will be used to refer to commercially available software products that are sold or licensed
at advertised prices. Furthermore, “COTS”, as used in this paper, will comply with the definition
of CAS contained in the FAA’s Acquisition Management System.

In discussing COTS, we need to consider four distinct groups of stakeholders: (1) the acquirer
(e.g., the FAA); (2) the application developer or system integrator who is developing a system
incorporating COTS components; (3) the COTS vendor who markets and licenses the COTS
product; and (4) the end user. The application developer may be a contractor, may be internal to
the acquisition organization, or may be a hybrid of the two.

There can be important benefits from the use of COTS, including faster system development
time, lower development costs, and continual product improvement, – the cost of which can be
shared by many users. The user base may be wide and diverse, increasing the opportunities to
surface problems and ultimately leading to a more stable and mature product. However, there
are risks as well, most stemming from the fact that there is much that is out of the control of the
COTS acquirer, integrator, and user. It is the vendor and not the stakeholders who control the
component’s functionality, its performance, and its evolution. As mentioned previously, a COTS
product’s life cycle may be shortened by market pressures and economically driven decision-
factors beyond the control of the FAA. This is a salient issue, and we must remain mindful of its
breadth of impact. The import of these issues is heightened when we are dealing with a mega-
corporation as the provider of the COTS product(s). They not only control the previously
mentioned functionality, performance and evolution of the COTS product(s), but also the inter-
component operability. This is critical when newer versions, updates, and releases of COTS
software are involved as components of a fielded FAA system.

One of the important characteristics of COTS is that the source code is typically unavailable to
the COTS integrator. Only the executable code is provided by the vendor. Ownership of the
product is not sold per se, rather a license to use the product is granted within established
agreement parameters (delimiting product functionality, vendor liability and usage of the product
via seat management, etc.). This does not include access to the source code. Without that
access, the activities involved in developing and maintaining a COTS-intensive system differ from
traditional, custom development. In traditional development, requirements definition is followed
by design, code, integration and test. For these systems, effort and cost are driven to a large
extent by the number of lines of code to be written or modified. An estimate of system size,
usually expressed in terms of the number of lines of code, is a major input into most software cost
models. With a system built from COTS components, the effort is not driven by the size of the
components but by other factors such as the complexity of the tailoring that must be done in order
for the COTS component to work in the local environment. The number of function points drives
the complexity of the involved tailoring efforts. These function points can have multiple inputs,
interfaces, and interdependencies within the COTS-intensive software system. The function
points are typically critical path elements and in traditional systems development comprise a large
part of “break point” testing measures. The level of effort (LOE) required to ensure that the COTS
products work as advertised can entail significant amounts of tailoring code. This LOE includes
the "glue code” needed to ensure a compatible fit and inter–component operation(s). The need
for glue code is especially evident when introducing newer COTS components into legacy system
environments.

LessonsLearned2.doc October 2, 2000

2

FAA Software Engineering Resource Center

APPLICATION DOMAINS

The sixteen projects reporting lessons learned covered a range of application domains. Twelve
were from the FAA. Of these twelve projects, six were air traffic management systems, two
handled air-to-ground communications, two were non-operational support systems, and two were
administrative systems. Of the remaining four projects, two were from the Air Force and handled
missile launches, one was an administrative system from the Army, and one was a mission
planning system from the Navy.

For simplicity, the term “COTS-intensive” is used here to describe the class of systems being
addressed. In fact, the system may be 100% COTS – this is common for administrative systems
– or the system may consist of a mix of COTS and custom code – this is common for operational,
safety-critical systems.

There was one notable difference between the administrative and the safety-critical systems in
the application level addressed by the COTS components. The COTS components reported for
the administrative systems were typically database management systems (DBMSs) or third party
components residing on a DBMS. These components embodied business processes in their
operation so that choosing a given component had broad implications for ways of doing business.
When asked to delineate their COTS components, the administrative projects did not mention
operating systems and other infrastructure software. Clearly, these COTS components were part
of the overall system but they were not the major focus of the COTS selection or tailoring activity.

 probably more flexible in supporting
end user/business processes

 project maintained
 integration, engineering focus

 products/parts are "black
boxes"

 COTS, NDI, legacy

 generic solutions; tightly
coupled to end user/business
processes

 vendor maintained
 tailoring, parameterization focus

Multiple products from
multiple suppliers integrated to
collectively provide system

functionality

One substantial product (suite)
tailored to provide significant

system functionality

COTS-Intensive
Systems

COTS-Solution
Systems

Spect rum o f COTS-Based Sys tems

In contrast, for the safety-critical systems, much of the application software is still custom
developed. For these systems, the focus of the COTS activity is at the infrastructure level.
Typical classes of COTS products delineated for these systems included operating systems,
device drivers, and network management software. The number of COTS components integrated
by a project ranged from one to 150. The lessons reported by the projects are discussed in this
document, beginning with those lessons most frequently mentioned.

LessonsLearned2.doc October 2, 2000

3

FAA Software Engineering Resource Center

LESSONS LEARNED

1 PROBLEMS WITH VENDORS

“Our biggest problem was with the vendors, especially with believing their claims. Very few
components worked as advertised.”

Six of the sixteen projects (38%) described vendor problems involving misleading claims or
promises. The most frequent problem was components that did not work as advertised. One
project complained about missed delivery dates. A common frustration was the lack of any real
leverage to require vendors to live up to their claims. The consequences ranged from annoying
to serious. One of the projects was in litigation with the vendor over an operating system
purchased for security features promised by the vendor, which never materialized. After a great
deal of effort spent trying to resolve this problem, the only solution was to implement security
measures through manual procedures.

One of the more surprising problems occurred for a project that used a COTS product at one site
on a pilot basis. The pilot implementation entailed a few hundred copies of the product; the full
implementation was worldwide and would entail tens of thousands of copies. Once the decision
was made to expand worldwide, the vendor raised the cost per copy. In the words of the project
manager, “We assumed that we would get a quantity discount. The price per copy is actually
going up. The increase in price is so great that we are seriously considering starting over, this
time writing the system ourselves from scratch.” A quantity discount had seemed so obvious that
it was not included in the original negotiation.

2 LEVERAGE IN GAINING VENDOR COOPERATION

Vendors are driven by profits, whether current or potential. They can be cooperative and
responsive when it is in their perceived interest to be so. One of the projects interviewed was the
first government buyer of a product that was previously used only in the commercial sector. The
vendor was extremely cooperative in modifying their product for government use because they
anticipated a much larger government market contingent upon the successful implementation of
their product and were willing to be a partner in making it work.

One person mentioned that any leverage with the vendor occurs before the contract is signed.
“That’s when vendors are willing to negotiate. Once you buy a component from a vendor, they
are a lot less willing to help out.”

3 NEED FOR FLEXIBILITY IN DEFINING REQUIREMENTS

“Don’t go COTS if you can’t bend your requirements. If you can be flexible, COTS is cheaper. If
not, it’s more expensive.”

Five of the sixteen projects (31%) pointed to the need for flexibility in defining requirements, and
in particular, the necessity of distinguishing between essential requirements and those that are
negotiable. Selection criteria can then be based on essential requirements. Several of the
projects described a process that iterated between defining requirements and looking at the
capabilities provided by the marketplace. For two of the projects, these iterations included
business processes as well.

This can be a lengthy process but one well worth investing in. One of the projects interviewed
spent over half of their development time (14 out of 22 months total) iterating between

LessonsLearned2.doc October 2, 2000

4

FAA Software Engineering Resource Center

requirements, business processes, and a market search and pointed to this as one of things they
felt they had done right. When end users are included in the selection and iteration, this fosters
as understanding of the COTS product as well as user buy-in, both of which are critical for a
successful system.

A mistake made by one project was to pay the vendor to make FAA-specific changes to their
product. The person interviewed from that project had the following to say: “We made the
vendor change his product when we should have changed our process. Since we were unwilling
to change our process, new development would have been a better choice.”

4 IMPORTANCE OF OPERATIONAL DEMONSTRATIONS

“Operational demos are important. At that point, vendors are bending over backwards to sell their
components so they’ll participate.”

Considering that the number one complaint was that the products did not live up to the vendors
claims, the only way to verify what one is really buying is to evaluate the product in the context of
an operational demonstration. If multiple components will be used together, they need to be
included together.

Once a contract is signed, it can be extremely difficult to force a vendor to make good on their
claims. As noted above, one of the projects is in litigation with the vendor but that can hardly be
viewed as a desired outcome. Time spent observing and assessing the product in the
operational environment in which it will be used was consistently seen as well worth the effort,
both by those projects that did this, as well as, by those that did not and later regretted that
decision.

Several projects brought users into the operational demonstrations and felt that this was an
extremely beneficial activity to ensure user buy-in.

5 ASSESSMENT OF SPECIFIC ATTRIBUTES

“If you have a safety-critical system, you don’t want state of the art COTS; you want mature
components.”

Product maturity was an important attribute in making selections for safety-critical systems.
Several people, in particular, pointed to operating system maturity as paramount.

Several of the projects did not assess specific attributes that later proved to be important.
Portability was mentioned by two of the projects. Both ended up changing hardware platforms,
something that was not anticipated during the original COTS selection.

One project mentioned installation ease as an attribute that they did not assess but later wished
they had because the installation turned out to be much more difficult and time consuming than
they had anticipated.

Inter-component compatibility and component flexibility were other attributes mentioned. For the
latter, the flexibility was with the user interface that did not allow for simpler navigation through
the product functions.

LessonsLearned2.doc October 2, 2000

5

FAA Software Engineering Resource Center

6 LIFE-CYCLE ISSUES

Refresh Strategies

“How do we upgrade an operational system without a great deal of disruption?”

One of the major differences in COTS versus traditional systems in the FAA centers upon the
frequency and scheduling of system upgrades or refreshes. Heretofore, the strategy has been to
upgrade at set, pre-determined intervals. These intervals are included in the initial system project
plan. With COTS based or COTS intensive systems, the strategies change due to span of
control issue(s). Several of the projects are currently struggling with issues related to refresh
strategies. Among the people we interviewed, there do not appear to be lessons learned so
much as questions being asked. People do not yet have sufficient experience to know the
advantages and drawbacks of different refresh strategies. Among these questions are:

• Do we stay continually abreast of all changes/developments as they appear?
• If possible, do we wait until a "major" refresh is needed (i.e., system operation would be

compromised without implementing this change)?
• Do we simply avoid all changes, except for critical Program Trouble Report (PTR) fixes for a

specific period of time?

When there are a number of COTS components (we included projects with 120 and 150 different
COTS components), the issue of incorporating new versions becomes a major concern. The
greater the number of components, the greater the number of version releases, each potentially
coming out at different times. The problem of keeping up with these releases is greatly
compounded for safety-critical systems that must remain in continual operation. One of our
projects faced exactly this situation and the following quote illustrates their dilemma: “Do we
freeze the configuration for some period of time and then replace the entire system? Do we
incorporate all new versions from all vendors? Do we refresh all components every few years?
Do we refresh a selected set of components every few years?” The importance of Operational
Demonstration Testing becomes heightened in the deployed COTS world. The need to maintain
test bed facilities (or contract to have the vendor do so) to seamlessly incorporate these refreshes
is paramount to system success. While one COTS component may remain relatively stable, it is
not known if even relatively innocuous changes can be accommodated within the NAS. Risk
assessment, risk mitigation, and migration plans all need to be incorporated up front – or at least
allowance made for these issues in the initial design and project schedule.

One of the projects – a safety-critical, continuously operating system, made the decision not to
upgrade but to freeze the configuration for ten years, after which the entire system will be
replaced. With this strategy, the concern shifts to supportability because vendors will stop
maintaining a product version after a period of time. This strategy necessitates upgrading to new
component version(s), continuing with an unsupported component, or paying the vendor a
premium to continue support for that instance of the product. In this case, the project negotiated
a one-year extension for vendor support and also purchased the source code, which they will
maintain throughout the remainder of the ten years.

One recommendation was to create an operational test environment to use for loading new
component versions in order to understand any and all impacts.

Software packages typically have about a two-year life cycle before the vendor no longer
supports them. One of the projects pointed to the need to incorporate a refresh cycle during
development so that the system delivered to the user is not already at end of life.

LessonsLearned2.doc October 2, 2000

6

FAA Software Engineering Resource Center

Maintenance Costs

 “People have to look at the entire life cycle realistically – not just the development cost but
consider what it’s going to cost to maintain over a number of years.”

Several people expressed the opinion that COTS saves dollars during system development but
may be more expensive than custom-built software over the full life cycle. This is because, as
noted above, components must be upgraded every few years or they will be no longer be
supported by the vendor. In additional to continuing licensing fees, new versions may require
additional tailoring, glue code and testing as well as additional product training.

7 COTS INTEGRATOR EXPERIENCE

“Look carefully at the credentials of the COTS integrators. There is a tendency to oversell.”

Several of the people interviewed expressed disappointment with the performance of the COTS
integrators stemming from a lack of experience in at least one of the following three areas:

• COTS integration in general
• The specific component(s) being integrated
• Knowledge of government business processes and terminology

Each of these is described in the following sections.

Lack of Experience with COTS Integration

“Our integrator didn’t know what they were doing and used this contract to get smart. They were
very unproductive.”

We found several cases in which the integrators were experienced in the application domain but
not in integrating COTS components. Some had relatively mature development processes
overall but were operating in an immature level for COTS integration. For example, one
integrator had been formally assessed as a Software CMM Level 3 but described their COTS
integration processes as ad hoc. In evaluating potential COTS integrators, it would be wise to
examine their experience in COTS integration and whether they have a defined and repeatable
process.

Lack of Experience with Specific COTS Components

The integrators for three of the projects were surprised by the amount of time required to become
sufficiently familiar with specific products in order to carry out their integration activities. For
example, in one of these cases, the tailoring activity required much more effort than originally
estimated due to the complexity of learning a vendor-specific scripting language. In the words of
one project manager, “If I were doing this again, I would add 6 months to the project for training
the people who had to do the product tailoring.”

Lack of Experience in the Government Domain

The final complaint related to a COTS product that was being tailored for the first time for a
government user. A consulting company was brought in that was very experienced in tailoring
this product in the commercial domain but this was their first experience tailoring it for
government use. A lot of time was needed for them to become familiar with government business
processes.

LessonsLearned2.doc October 2, 2000

7

FAA Software Engineering Resource Center

8 NEED FOR TECHNOLOGY WATCH TO KEEP UP WITH VENDORS

“You have to constantly monitor the state of the COTS components. We had a company fold and
we were taken by surprise. A technology watch would have prevented us from getting stuck.”

The need for a technology watch to track vendors and products was mentioned by two projects,
each of which integrated over a hundred software COTS components. As the above quote
makes clear, one of these projects was caught by surprise when the vendor of a key component
went out of business and left them scrambling to find a substitute.

9 INTERFACE TO LEGACY SYSTEMS

“The Achilles' heel of all COTS projects is the interface to legacy systems. They fail here over
and over again. This is the part that is not working well for us.”

One of the projects, that in many ways was successful, reported difficulties in interfacing to
legacy systems. These difficulties encompassed incompatibilities with data as well as with
business processes. The data incompatibilities resulted from different formats and relationships.
The project decided not to convert the legacy data, in part, because the users had minimal
confidence in the integrity of the data. Their solution was to store the legacy data and make it
available for reporting purposes only.

A second type of interface problem occurred with incompatibilities in business rules and timing
cycles between the COTS product and the legacy systems. The COTS product was able to make
database updates immediately but the legacy system was not which resulted in data
inconsistency across systems. Differences in business processes were embodied across
systems as well with the result that additional software had to be written to recreate the old
business rules in the new COTS-based system just to be able to keep transactions moving.

10 IMPACTS OF VOLATILITY DURING DEVELOPMENT

“You may have to re-tailor COTS components with new releases. In our case, we had to write
new scripts to accommodate new features.”

In general, we were surprised by the fact that only one project mentioned COTS volatility as an
issue at all. That project referred to it in the context of having to write additional tailoring scripts.
The lack of COTS volatility among these projects may have been at least in part the result of a
deliberate freezing of the product baseline. For example, as noted earlier, one project simply
froze their configuration of COTS components so that what was delivered to the field was already
nearing its end of life. The recommendation from that project was to build in a refresh cycle prior
to delivery.

11 VENDOR MANAGEMENT

“We spent 65 staff months with the vendor. We had never planned on this.”

One project mentioned vendor management as an issue. That project was having major
problems with a component not performing as advertised. The vendor tried to be accommodating
but never could get it working correctly.

LessonsLearned2.doc October 2, 2000

8

FAA Software Engineering Resource Center

Summary

“If you’re going to do a COTS effort, upper-level management needs to understand the
advantages and disadvantages of COTS and they have to support the effort with resources.
They have to understand that they are buying into a different process.”

There was a sentiment, expressed by several of the people interviewed, that upper-level
management does not understand the risks in moving to COTS solutions. The perception of
these people was that upper-management views COTS as low risk. What we have seen in
interviewing the projects is that COTS-based solutions do entail risk simply because so much is
out of the control of the system integrator.

However, we have also seen actions that projects can take to minimize their risk exposure.
These can be summarized as follows:

• Do not rely on vendor claims; verify with operational demonstrations. Time spent on detailed

operational demonstrations was consistently viewed as time well spent.
• Bring the users into the operational demonstrations, not just the vendors. The more diverse

the user community and the greater the impact on their business processes, the more
important this is.

• Establish a technology watch to track vendors and products.
• Be forward looking in assessing attributes. Unanticipated changes in hardware platforms

may occur.
• Understand that your leverage occurs before the contract with the vendor is signed.
• Negotiate all prices up front.
• Understand that profits are what motivate vendors. Whether they are cooperative or not

depends to a large degree on anticipated profits.
• Distinguish between essential requirements and those that can be negotiated. Successful

use of COTS solutions requires the capability to modify requirements.
• Use mature products for safety-critical applications.
• Skill level and experience are important. This includes people on the acquirer’s side who are

determining essential requirements as well as the COTS integrators.
• Expect to spend time in training. In choosing a system integrator, look not only at experience

in the application domain but also with COTS integration in general and with the specific
products to be integrated. Do they have a mature COTS integration process?

Consider including a refresh cycle before fielding the system so that the products are not nearing
end-of-life. Even with a system development of 24 months, COTS components are likely to be
obsolete by one or more versions.

Consider the impact of discrepancies between your COTS-based system and any legacy systems
with which your system interfaces. These discrepancies may take the form of inconsistencies in
data, in timing of transactions, and in business processes.

LessonsLearned2.doc October 2, 2000

9

	APPLICATION DOMAINS
	LESSONS LEARNED
	PROBLEMS WITH VENDORS
	LEVERAGE IN GAINING VENDOR COOPERATION
	NEED FOR FLEXIBILITY IN DEFINING REQUIREMENTS
	IMPORTANCE OF OPERATIONAL DEMONSTRATIONS
	ASSESSMENT OF SPECIFIC ATTRIBUTES
	LIFE-CYCLE ISSUES
	COTS INTEGRATOR EXPERIENCE
	NEED FOR TECHNOLOGY WATCH TO KEEP UP WITH VENDORS
	INTERFACE TO LEGACY SYSTEMS
	IMPACTS OF VOLATILITY DURING DEVELOPMENT
	VENDOR MANAGEMENT

